If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4x^2+7x-3=4x
We move all terms to the left:
4x^2+7x-3-(4x)=0
We add all the numbers together, and all the variables
4x^2+3x-3=0
a = 4; b = 3; c = -3;
Δ = b2-4ac
Δ = 32-4·4·(-3)
Δ = 57
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(3)-\sqrt{57}}{2*4}=\frac{-3-\sqrt{57}}{8} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(3)+\sqrt{57}}{2*4}=\frac{-3+\sqrt{57}}{8} $
| (s+45)+32=(50s+28) | | (z-49)+(z+20)=(z+50) | | (3s-41)+(s+5)=(s+48) | | (a+38)-(a+2)=(a-2) | | (a+38)+(a+2)=(a-2) | | (a+38)+(a+2)=a-2 | | (y-35)+(y-30)=y | | 7.50/x=300 | | (8s+30)+(21s+29)=(44s+44) | | 3^12-3x=9^-3 | | 2x-10x=120 | | (t-22)-(t+36)=t | | (t-22)+(t+36)=t | | 2h/5+5=3(7) | | 4(x-5)-2x=18 | | (s-44)+(s-45)=s | | (v-37)+(v-33)=(v+9) | | (p-12)+(p+11)=(p+44) | | (p-12)(p+11)=(p+44) | | 2h/5+5=3(4) | | (x+50)-(x-12)=x | | (x-2)^2=2x^2-3x-26 | | (z-31)-(z+39)=z | | 9x9x=567 | | (w-46)+(w-43)=w | | (s+9)+(s+5)=(s+44) | | (x-50)+(x-46)=x | | (D^3+160)y=0 | | (x-40)+(x-31)=x | | (s-8)+(s+13)=(s+47) | | 2.2=8.4+y | | 3x^2+9x^2+100=0 |